script: /data/user2/work/80/statistics~DESeq2 "$scriptdir"/statistics~scatter_with_variance c2997108/centos6:3 c2997108/centos7:1-trinity_2.8.5-kallisto_0.46.0 c2997108/centos7:1-trinity_2.8.5-kallisto_0.46.0-blast_2.9.0-trinotate-3.1.1-R_3-kegg_2 c2997108/centos7:1-trinity_2.8.5-kallisto_0.46.0-blast_2.9.0-trinotate-3.1.1-R_4-kegg_4 centos:centos6 using docker + set -o pipefail + script=run-DESeq2.0h_B_1.fq.gz.1week_A1_1.fq.gz.gene.R + inputsamplematrix=sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + inputmatrix=kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + g1=0h_B_1.fq.gz + g2=1week_A1_1.fq.gz + '[' 0h_B_1.fq.gz = '' ']' + '[' 1week_A1_1.fq.gz = '' ']' + p=0.05 ++ basename kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + outputfile=DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt ++ basename sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt ++ basename kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + samplex=DESeq2.sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.x ++ basename sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt ++ basename kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + sampley=DESeq2.sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.y ++ basename kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + outputfilexup=result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.up.1week_A1_1.fq.gz.down.txt ++ basename kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + outputfileyup=result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.down.1week_A1_1.fq.gz.up.txt + '[' Trinotate.xls3.gene.cnt = '' ']' + annotationfile=Trinotate.xls3.gene.cnt + cat + docker run -v /data/user2/work/80:/data/user2/work/80 -w /data/user2/work/80 -u root -i --rm c2997108/centos7:1-trinity_2.8.5-kallisto_0.46.0-blast_2.9.0-trinotate-3.1.1-R_4-kegg_4 R --vanilla R version 3.5.2 (2018-12-20) -- "Eggshell Igloo" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-redhat-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(DESeq2) Loading required package: S4Vectors Loading required package: stats4 Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colMeans, colSums, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Attaching package: 'S4Vectors' The following object is masked from 'package:base': expand.grid Loading required package: IRanges Loading required package: GenomicRanges Loading required package: GenomeInfoDb Loading required package: SummarizedExperiment Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Loading required package: DelayedArray Loading required package: matrixStats Attaching package: 'matrixStats' The following objects are masked from 'package:Biobase': anyMissing, rowMedians Loading required package: BiocParallel Attaching package: 'DelayedArray' The following objects are masked from 'package:matrixStats': colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges The following objects are masked from 'package:base': aperm, apply > colData <- read.table("sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt", header=T, row.names=1, sep="\t") > countData=round(read.table("kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt",sep="\t",header=T,row.names=1)) > mydata=data.frame("group"=as.character(colData[,1]),stringsAsFactors=F) > dds <- DESeqDataSetFromMatrix(countData = countData, colData = mydata, design = ~ group) converting counts to integer mode Warning message: In DESeqDataSet(se, design = design, ignoreRank) : some variables in design formula are characters, converting to factors > dds <- DESeq(dds) estimating size factors estimating dispersions Error in checkForExperimentalReplicates(object, modelMatrix) : The design matrix has the same number of samples and coefficients to fit, so estimation of dispersion is not possible. Treating samples as replicates was deprecated in v1.20 and no longer supported since v1.22. Calls: DESeq ... estimateDispersions -> .local -> checkForExperimentalReplicates Execution halted + true + '[' '!' -e DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt ']' + touch DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + tail -n+2 DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + cut -f 1 + awk '-F\t' -v g1=0h_B_1.fq.gz '$2==g1{print $1}' sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + awk '-F\t' -v g2=1week_A1_1.fq.gz '$2==g2{print $1}' sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + bash /data/user2/work/80/statistics~scatter_with_variance -x 0h_B_1.fq.gz -y 1week_A1_1.fq.gz kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id DESeq2.sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.x DESeq2.sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.y c2997108/centos6:3 c2997108/centos7:1-trinity_2.8.5-kallisto_0.46.0 c2997108/centos7:1-trinity_2.8.5-kallisto_0.46.0-blast_2.9.0-trinotate-3.1.1-R_3-kegg_2 c2997108/centos7:1-trinity_2.8.5-kallisto_0.46.0-blast_2.9.0-trinotate-3.1.1-R_4-kegg_4 centos:centos6 using docker + set -o pipefail + countmat=kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + sigmat=DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id + listx=DESeq2.sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.x + listy=DESeq2.sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.y + label_x=0h_B_1.fq.gz + label_y=1week_A1_1.fq.gz + p=0.05 ++ basename kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt ++ basename DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id + output=kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id + cat kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + awk '-F\t' 'FILENAME==ARGV[1]{if(FNR>1){for(i=2;i<=NF;i++){a[i]+=$i}}} FILENAME==ARGV[2]{if(FNR==1){print $0}else{ORS=""; print $1;for(i=2;i<=NF;i++){print "\t"$i/a[i]*1000*1000}; print "\n"}}' /dev/stdin kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + cat DESeq2.sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.x + awk '-F\t' 'FILENAME==ARGV[1]{a[$1]=1} FILENAME==ARGV[2]{if(FNR==1){for(i=1;i<=NF;i++){if(a[$i]==1){b[i]=1}}}; ORS=""; print $1; for(i=2;i<=NF;i++){if(b[i]==1){print "\t"$i}}; print "\n"}' /dev/stdin kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm + cat DESeq2.sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.y + awk '-F\t' 'FILENAME==ARGV[1]{a[$1]=1} FILENAME==ARGV[2]{if(FNR==1){for(i=1;i<=NF;i++){if(a[$i]==1){b[i]=1}}}; ORS=""; print $1; for(i=2;i<=NF;i++){if(b[i]==1){print "\t"$i}}; print "\n"}' /dev/stdin kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm + cat DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id + awk '-F\t' 'FILENAME==ARGV[1]{a[$1]=1} FILENAME==ARGV[2] && (FNR==1 || a[$1]==1){print $0}' /dev/stdin kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm_x + cat DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id + awk '-F\t' 'FILENAME==ARGV[1]{a[$1]=1} FILENAME==ARGV[2] && (FNR==1 || a[$1]==1){print $0}' /dev/stdin kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm_y + cat + docker run -v /data/user2/work/80:/data/user2/work/80 -w /data/user2/work/80 -u root -i --rm c2997108/centos7:1-trinity_2.8.5-kallisto_0.46.0-blast_2.9.0-trinotate-3.1.1-R_4-kegg_4 R --vanilla R version 3.5.2 (2018-12-20) -- "Eggshell Igloo" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-redhat-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > label_x="0h_B_1.fq.gz" > label_y="1week_A1_1.fq.gz" > file_data_x="kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm_x" > file_data_y="kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm_y" > file_sig_data_x="kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm_x_sig" > file_sig_data_y="kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm_y_sig" > data_x=round(read.table(file_data_x,sep="\t",header=T,row.names=1)) > data_y=round(read.table(file_data_y,sep="\t",header=T,row.names=1)) > sig_data_x=read.table(file_sig_data_x,sep="\t",header=T,row.names=1) > if(dim(sig_data_x)[1]!=0){sig_data_x=round(sig_data_x)} > sig_data_y=read.table(file_sig_data_y,sep="\t",header=T,row.names=1) > if(dim(sig_data_y)[1]!=0){sig_data_y=round(sig_data_y)} > mean_data_x=apply(data_x,1,mean) > mean_data_y=apply(data_y,1,mean) > if(dim(data_x)[2]>1){ + dx=apply(data_x,1,function(i){return(abs(qt(0.05/2, length(i)-1)) * sd(i) / sqrt(length(i)))}) + }else{ + dx=0 + } > if(dim(data_y)[2]>1){ + dy=apply(data_y,1,function(i){return(abs(qt(0.05/2, length(i)-1)) * sd(i) / sqrt(length(i)))}) + }else{ + dy=0 + } > vx=dx/mean_data_x > vy=dy/mean_data_y > vx[is.na(vx)]=0 > vy[is.na(vy)]=0 > #total_var_data=sqrt(dx^2+dy^2)/sqrt(mean_data_x^2+mean_data_y^2) > #total_var_data[is.na(total_var_data)]=0 > total_var_data=sqrt(vx^2+vy^2) > mean_sig_data_x=apply(sig_data_x,1,mean) > mean_sig_data_y=apply(sig_data_y,1,mean) > min_x=min(mean_data_x[mean_data_x>0])/10 > min_y=min(mean_data_y[mean_data_y>0])/10 > plot_mean_data_x=mean_data_x+min_x > plot_mean_data_y=mean_data_y+min_y > plot_mean_sig_data_x=mean_sig_data_x+min_x > plot_mean_sig_data_y=mean_sig_data_y+min_y > max_x=max(plot_mean_data_x) > max_y=max(plot_mean_data_y) > library(Cairo) > mainplotfunc=function(){ + if(max(dx,dy)>0){ + start_class=quantile(total_var_data[total_var_data>0],c(0,1,25,50,75,90,100)/100)[2] + end_class=quantile(total_var_data[total_var_data>0],c(0,1,25,50,75,90,100)/100)[6] + + CairoPNG("kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.scatter.png",width=800,height=600) + num_class=22 + library(RColorBrewer) + #mycol=colorRampPalette(c(rgb(0.5,0,0.2,0.4),rgb(1,0.8,0.7,1)), alpha=TRUE)(num_class) + colPal3 <- colorRampPalette(brewer.pal(9,"YlOrRd")[3:9]) + mycol=colPal3(num_class) + + layout(matrix(c(1,1,1,1,2),1,5)) + par(ps = 18) + k=0 + i=end_class + n=(total_var_data>=i) + xt=plot_mean_data_x[n] + yt=plot_mean_data_y[n] + plot(xt,yt,log="xy",xlim=c(min_x,max_x),ylim=c(min_y,max_y),cex=2*(k+1)^3/num_class^3,pch=21,col=adjustcolor(mycol[k+1],0),bg=adjustcolor(mycol[k+1],1-0.4*k/num_class),xlab=label_x,ylab=label_y) + + for(k in 1:(num_class-2)){ + i=end_class+(start_class-end_class)*k/(num_class-2) + n=(total_var_data>=i & total_var_data=i & total_var_data=",i),pos=4) + } + k=num_class-1 + i=min(total_var_data) + par(new=T) + plot(c(0),c(k),xlim=c(0,0),ylim=c(-1,num_class),col=adjustcolor(mycol[k+1],0),bg=adjustcolor(mycol[k+1],1-0.4*k/num_class),pch=21,cex=2*(k+1)^3/num_class^3,bty="n",axes=F,xlab="",ylab="") + text(c(0.05),c(k),paste(">=",i),pos=4) + text(0,num_class+0.2,"95%conf/mean") + par(new=T) + plot(c(-0.3),c(-1),xlim=c(0,0),ylim=c(-1,num_class),col="green",cex=1,bty="n",axes=F,xlab="",ylab="") + text(c(-0.3),c(-1),paste("significant"),pos=4) + + dev.off() + } + } > subplotfunc=function(){ + CairoPNG("kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.scatter.normal.png",width=600,height=600) + plot(plot_mean_data_x,plot_mean_data_y,log="xy",xlim=c(min_x,max_x),ylim=c(min_y,max_y),cex=0.1,pch=21,col=adjustcolor("#000000",0.5),xlab=label_x,ylab=label_y) + par(new=T) + plot(plot_mean_sig_data_x,plot_mean_sig_data_y,log="xy",xlim=c(min_x,max_x),ylim=c(min_y,max_y),col="green",cex=2,axes=F,xlab="",ylab="") + dev.off() + } > > wflag=0 > while(wflag<=5){ + restry=NULL + restry=try(mainplotfunc(), silent = FALSE) + if(class(restry)!="try-error"){break} + try(dev.off()) + Sys.sleep(10+runif(1, min=0,max=100)/10) + wflag=wflag+1 + } > wflag=0 > while(wflag<=5){ + restry=NULL + restry=try(subplotfunc(), silent = FALSE) + if(class(restry)!="try-error"){break} + try(dev.off()) + Sys.sleep(10+runif(1, min=0,max=100)/10) + wflag=wflag+1 + } > > > + rm -f kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm_x kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm_y kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm_x_sig kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id.cpm_y_sig + post_processing + '[' 3 = 1 ']' + exit + awk '{if($3>=0){print $1"\tx"}else{print $1"\ty"}}' + tail -n+2 DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + awk '-F\t' 'NR==1{print "id\t"$0} NR>1{print $0}' DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt + cut -f 1,7 + awk '-F\t' 'NR==1{print -1"\t"$0} NR>1{print $2"\t"$0}' + sort -k1,1g + cut -f 2- + awk '-F\t' 'FILENAME==ARGV[1]{xy[$1]=$2} FILENAME==ARGV[2]{if(FNR==1){header=$0}; res[$1]=$0} FILENAME==ARGV[3]{if(FNR==1){print header"\t"$2}else{if(xy[$1]=="x"){print res[$1]"\t"$2}}}' DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.xy Trinotate.xls3.gene.cnt DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.p + awk '-F\t' 'FILENAME==ARGV[1]{xy[$1]=$2} FILENAME==ARGV[2]{if(FNR==1){header=$0}; res[$1]=$0} FILENAME==ARGV[3]{if(FNR==1){print header"\t"$2}else{if(xy[$1]=="y"){print res[$1]"\t"$2}}}' DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.xy Trinotate.xls3.gene.cnt DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.p + i=result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.up.1week_A1_1.fq.gz.down.txt + sed 's/\t$//' + awk '-F\t' -v maxlen=30000 'FILENAME==ARGV[1]{for(i=1;i<=NF;i++){n=int((length($i)-1)/maxlen)+1; if(n>a[i]){a[i]=n}}} FILENAME==ARGV[2]{if(FNR==1){ORS=""; for(i=1;i<=NF;i++){if(a[i]<=1){print $i"\t"}else{for(j=1;j<=a[i];j++){print $i" (split "j")\t"}}}; print "\n"}else{for(i=1;i<=NF;i++){if(a[i]<=1){print $i"\t"}else{for(j=1;j<=a[i];j++){print substr($i,(j-1)*maxlen+1,maxlen)"\t" }}}; print "\n"}}' result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.up.1week_A1_1.fq.gz.down.txt ./result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.up.1week_A1_1.fq.gz.down.txt + i=result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.down.1week_A1_1.fq.gz.up.txt + awk '-F\t' -v maxlen=30000 'FILENAME==ARGV[1]{for(i=1;i<=NF;i++){n=int((length($i)-1)/maxlen)+1; if(n>a[i]){a[i]=n}}} FILENAME==ARGV[2]{if(FNR==1){ORS=""; for(i=1;i<=NF;i++){if(a[i]<=1){print $i"\t"}else{for(j=1;j<=a[i];j++){print $i" (split "j")\t"}}}; print "\n"}else{for(i=1;i<=NF;i++){if(a[i]<=1){print $i"\t"}else{for(j=1;j<=a[i];j++){print substr($i,(j-1)*maxlen+1,maxlen)"\t" }}}; print "\n"}}' result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.down.1week_A1_1.fq.gz.up.txt ./result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.down.1week_A1_1.fq.gz.up.txt + sed 's/\t$//' + docker run -v /data/user2/work/80:/data/user2/work/80 -w /data/user2/work/80 -u root -i --rm c2997108/centos7:1-trinity_2.8.5-kallisto_0.46.0-blast_2.9.0-trinotate-3.1.1-R_4-kegg_4 java -Xmx1G -jar /usr/local/bin/excel2.jar result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.up.1week_A1_1.fq.gz.down.txt.temp result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.up.1week_A1_1.fq.gz.down.txt.xlsx Start converting + docker run -v /data/user2/work/80:/data/user2/work/80 -w /data/user2/work/80 -u root -i --rm c2997108/centos7:1-trinity_2.8.5-kallisto_0.46.0-blast_2.9.0-trinotate-3.1.1-R_4-kegg_4 java -Xmx1G -jar /usr/local/bin/excel2.jar result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.down.1week_A1_1.fq.gz.up.txt.temp result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.down.1week_A1_1.fq.gz.up.txt.xlsx Start converting + rm -f DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.id DESeq2.sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.x DESeq2.sample.input.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.y DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.xy DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.p result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.up.1week_A1_1.fq.gz.down.txt.temp result.DESeq2.kallisto.gene.counts.matrix.0h_B_1.fq.gz.1week_A1_1.fq.gz.txt.0h_B_1.fq.gz.down.1week_A1_1.fq.gz.up.txt.temp + post_processing + '[' 2 = 1 ']' + exit